Geometry and Measures

Guidance for Teachers

Highfield Schools

The following guidance aims to provide a consistent approach to Geometry and Measures branch of Mathematics, and includes guidance on properties of 2D and 3D shapes, time, money and measures

The main aims of this guidance is to:

- Create love and enthusiasm for Maths
- Develop a deeper understanding of the properties of shapes
- Improve pupils' ability to work with time and money
- Ensure a consistent approach within schools
- Support Medium Term planning at Highfield Schools

2D shape

Definition: shapes that have only 2 dimensions, generally width and height, but no thickness

Core skills

To progress and use 2D shapes effectively, pupils will need:

- Basic number skills, counting

Progression

Recognise and name common 2D shapes

Identify and describe properties of 2D shapes

2 S Name		Sides
Vertices triangle 3 3 circle 1 0 square 4 4 rectangle 4 4 pentagon 5 5 hexagon 6 6		

Recognise 2D shapes on the surface of 3D shapes

Compare and sort 2D shapes

Example

Sort by number of sides, number of vertices, straight or curved edges

Compare and classify triangles based upon properties

Compare and classify quadrilaterals based upon properties

Use properties of quadrilaterals to work out missing lengths and angles

Example worksheet

We can use the properties of quadrilaterals to find missing angles and lengths

Identify lines of symmetry in 2D shape

Recognise regular and irregular polygons
Note: A polygon is regular when all angles are equal and all sides are equal, otherwise it is irregular

Illustrate and name parts of circles

- Basic

- Intermediate

- Advanced

3D Shape

Definition: shapes with three dimensions (such as height, width and depth), like any object in the real world.

Core skills

To progress and use 3D shapes effectively, pupils will need:

- Basic number skills, counting
- A knowledge of basic 2D shapes

Progression

Recognise and name common 3D shapes

- Compare and sort common 3D shapes and everyday objects
- Describe properties of 3D shapes (faces, vertices (corners), edges)
- Recognise 3D shapes in different orientations

Nets of 3D shapes

- Construct 3D shapes from nets
- Recognise and draw nets of 3D shapes

cuboid

cylinder

cube

square-based pyramid

cone

Angles and Lines

Definition: a line is a straight one-dimensional figure that has no thickness and extends endlessly in both directions
An angle is the amount of turn between two lines around their common point

Core skills

To progress and use angles and lines effectively, pupils will need:

- Basic numeracy skills
- Knowledge of 2D shapes
- Understanding of symmetry

Progression

Recognise angles as a property of a shape or description of a turn
Note: Start with quarter, half and three-quarter turns.
Use clockwise and anticlockwise if appropriate - how else can I turn threequarters clockwise?

Identify right angles

Identify if angles are greater than or less than a right angle

Identify horizontal \& vertical lines, perpendicular \& parallel lines

Know angles are measured in degrees, and protractors are used to measure angles

Identify acute, obtuse and reflex angles

Compare and order different types of angles
Put these angles in order of size

Draw given angles and measure in degrees

Note: This requires confidence in protractor use - pupil must be familiar with the two scales on the protractor to become proficient at this

Recognise angles at a point equal one whole turn (360 degrees)

Recognise angles on a straight line equal half a turn (180 degrees)

Angles on a straight line add up to 180°

Know that angles in a triangle add to 180°.

Calculate unknown angles in triangles

Perimeter, Area and Volume

Definitions:

Perimeter - the continuous line forming the boundary of a two-dimensional shape
Area - the space occupied by a flat shape or the surface of an object
Volume - the quantity of three-dimensional space enclosed within a container

Core skills

To progress and use perimeter, area and volume effectively, pupils will need:

- Basic numeracy skills
- To be able to read and use a ruler
- Understanding of 2D shapes
- Understanding 3D shapes

Progression

Measure the perimeter of simple 2D shapes

Calculate the perimeter in cm and m

Find the area of shapes by counting squares

Calculate the area of rectangles

Estimate the area of irregular shapes

Count squares to estimate area

Recognise shapes with the same area can have different perimeters
Shapes a, b and c all have area $12 \mathrm{~cm}^{2}$

Perimeter $a=14 \mathrm{~cm}$, Perimeter $b=16 \mathrm{~cm}$, Perimeter $c=26 \mathrm{~cm}$

Calculate the area of compound shapes

Calculate the area of parallelograms
Area of parallelogram $=$ length \times height
Example

Area of parallelogram $=9 \times 7=63 \mathrm{~cm}^{2}$
Calculate the area of triangles
Area of triangle $=\frac{1}{2} \times$ base \times height
Example

Area of triangle $=\frac{1}{2} \times 14 \times 10=70 \mathrm{~cm}^{2}$

Calculate volume of cubes and cuboids

Volume of cube or cuboid $=$ base \times height \times width
Example

Volume of cuboid $=5 \times 3 \times 6=90 \mathrm{~cm}^{3}$

Time

Definition: the ongoing sequence of events taking place

Core skills

To progress and use fractions effectively, pupils will need:

- Basic numeracy skills
- Understanding of equal portions/sizes
- Understanding of symmetry
- Knowledge of multiples and factors

Progression

Sequence events in chronological order
Use words such as yesterday, tomorrow, first, next, before, after

Recognise language related to dates
Days of the week, months, years, seasons

Tell the time to the hour
What time does this clock show?

Draw hands on this clock to show 4 o'clock

Tell the time to the half hour

Draw hands on this clock to
show half past 7

Compare and sequence intervals of time

Example questions

A. Choose one of these phrases to fill each gap with:

- takes longer than
- takes less time than
- takes about the same time as

1. Brushing your teeth		reading a book.
2. Watching a film		watching a TV programme.
3. Knitting a jumper		making a paper aeroplane.
4. Making a cup of tea		eating an apple.

B. Can you put these events in order from the one that would take the least time up to the one that would take the most time?

Travelling to the Moon by car	Flying to America	Walking to the local shop	Watching a film	Sailing to America by boat
less time	more time			

C. Can you use the signs <, > and = to make these statements correct?

1 hour		1 minute
100 minutes		1 hour
1 minute		1 second
1 week		24 hours

Tell the time to quarter to and quarter past
Example activity - matching cards

Know the number of seconds in a minute, minutes in an hour, hours in a day

Example activity

> True or false?
there are 60 minutes in 1 hour

1 minute is made up of 24 seconds
there are 30 minutes in half an hour
a quarter of an hour $=45$ minutes
a quarter of an hour is 10 minutes

$$
24 \text { hours }=1 \text { day }
$$

Tell the time in 5 minute intervals

Tell and write the time on an analogue clock, roman numerals

Example worksheet

Write the time shown on each clock.

\qquad
\qquad
\qquad

Tell the time on 12 and 24 hour clocks

Example activity - loop cards

Estimate and read time to the nearest second, minutes and hours

Use AM PM morning noon night vocabulary

Example worksheet

In each pair, tick the time which comes earliest in the day. The first one is done for you.

3:15 p.m.	\bigcirc	11:30	\bigcirc
$04: 15$	\bigcirc	4:30 д.m.	\bigcirc
$13: 15$	\bigcirc	1:00 p.m.	\bigcirc
$8: 30$ p.m.	\bigcirc	$09: 15$	\bigcirc
$11: 30$ a.m.	\bigcirc	$23: 30$	\bigcirc
$14: 30$	\bigcirc	$2: 15$ p.m.	\bigcirc

Know the order of the months and the number of days in each month

Examples

a. Which is the second month of the year?
b. Which month is between August and October?
c. Which month is likely to be hot? \qquad

30 Days Has September

d. Which month might be very cold? \qquad
30 days has September, April, June and November. All the rest have 31, Excepting February alone, Which only has 28 days clear, And 29 in each leap year.

Compare durations of events

Example worksheet

Convert between analogue and digital 12 and 24 hour clocks

Example worksheet

1. Convert the following times on these analogue clocks to digital time.
2. Draw the following times on these clock faces.
a)

c)

d)

06:55
d)

21:40

Solve problems involving converting hours to minutes, years to months

Example questions

1) Rob and Josie had a race.

Rob took 165 seconds.
Josie took 2 minutes 35 seconds.
Who won?
Show how you decide.
2) It takes Jade 35 minutes to walk from her home to the station.

She then waits 15 minutes for the train.
The train journey to Derby takes 1 hour 5 minutes.
a) What is her total journey time from home to Derby?
b) Jade leaves home at 7.00 am . What time should she get to Derby?

Money

Definition: coins and banknotes collectively; generally accepted as payment for goods and services

Core skills

To progress and use money effectively, pupils will need:

- Basic numeracy skills, counting
- Addition and subtraction

Progression

Recognise and know the value of different British coins

Recognise and use symbols for pounds (£) and pence (p)
Recognise British bank notes

Combine amounts to make a particular value

Example question

Look at the coins

Use the coins to make a total of $7 p$

Find different combinations of coins that equal the same amount

Example question

Look at the coins

Find two different ways to make a total of $8 p$
Convert between pounds and pence, and vice versa

Example questions

How many pence is $£ 1.50$?

Write 352 pence in pounds

Solve simple money problems involving giving change

Example question

Large cakes cost 50p each Small cakes cost 35p each

Dita buys a large cake and a small cake. What is the total cost?
She pays with a $£ 1$ coin.
How much change should she get?

Add and subtract money to give change in practical contexts

Example question

David has £60
He buys three CDs for $£ 9.99$ each and a computer game for $£ 24.99$
How much money does he spend?
How much money does he have left?

Using Measures

Definition: a fraction is a numerical quantity that is not a whole number, consists of numerator (top) and denominator (bottom)

Core skills

To progress and use fractions effectively, pupils will need:

- Basic numeracy skills
- Understanding of equal portions/sizes
- Understanding of symmetry
- Knowledge of multiples and factors

Progression

Compare lengths and heights (long short double half taller shorter)

Compare mass (heavy light)

Example question

Which is lighter?

Tick your answer.

\square

Compare capacity and volume (full empty half full nearly full nearly empty)

Example question

Look at the containers.

A

B

C

Which container is half full?
Which container is more than half full?

Measure and record length, height, mass, weight, capacity and volume

Example question - estimate the length of each object then measure them

Object	Estimate	Measurement
scissors		
glue stick		
desk		
whiteboard		
book		
paper		

Choose appropriate standard measures to estimate and measure

Example question

Match the measurements with the most suitable units.
Choose one unit only for each measurement.

Weight of a mouse
Height of a house
Volume of liquid in a can of drink

Centimetres
Grams
Litres
Kilograms
Metres
Millilitres

Compare and order measures and record using < > and =

Example worksheet

1) Compare these measurements using <, > or $=$

12 cm		15 cm
9 cm		4 cm
1 cm		10 mm
35 mm		4 cm
8 m		4 m
6 m		12 m
3 m		350 cm
4 m		400 cm

2) Order these measurements from shortest to longest.

Convert metric and imperial measures

Notes

Approximate conversions for mental (approximate) values
1 pint $=0.5$ litres 1 litre $=2$ pints
$1 \mathrm{lb}=0.5 \mathrm{~kg}$
$1 \mathrm{~kg}=2 \mathrm{lbs}$
$1 \mathrm{ft}=30 \mathrm{~cm}$
1 metre $=3 f t$

Exact conversions for calculator values

1 pint $=0.57$ litres
$1 \mathrm{lb}=0.45 \mathrm{~kg}$
$1 \mathrm{ft}=30.38 \mathrm{~cm}$
1 inch $=2.5 \mathrm{~cm}$
1 mile $=1.6 \mathrm{~km}$

1 litre $=1.76$ litres
$1 \mathrm{~kg}=2.2 \mathrm{lbs}$
1 metre $=3.28 \mathrm{ft}$
$1 \mathrm{~cm}=0.39$ inches
$1 \mathrm{~km}=0.625$ miles

Use all four operations to solve measures problems

Example questions

1) Dad drives a truck. Last week, he drove 267 kilometres on Monday, 186 on Tuesday, and 198 on Wednesday. This week, Dad drove 282 kilometres in total. What is the difference in kilometres between this week and last week?
2) I walk 3000 m every day. How many days would it take me to walk 273 kilometres?
3) Billy drew a chalk like on the playground. He drew a blue line 88 cm long and then continued the line in red chalk. The total length of the line was 1.3 m . How long was the red section of the line?

Use read write and convert between standard units smaller to larger/decimals

Example worksheet

Convert.
1 a. $2,000 \mathrm{~m}=$ \qquad km
1b. $9 \mathrm{~km}=$ \qquad m
2a. $9,000 \mathrm{ml}=$ \qquad L
2 b. $3 \mathrm{~kg}=$ \qquad g

3a. $6 \mathrm{~L}=$ \qquad ml

3 b. $90 \mathrm{~mm}=$ \qquad cm

4a. $6 \mathrm{~cm}=$ \qquad mm
$4 \mathrm{~b} .4 \mathrm{~km}=$ \qquad m

Useful Websites

Activities for all year groups: www.ixl.com

Go Gordons Interactive Maths: http://www.wldps.com/gordons/

Top Marks Games: http://www.topmarks.co.uk/maths-games/5-7-years/counting Algebra tiles: $h t+p: / / t e c h n o l o g y . c p m . o r g / g e n e r a l / t i l e s / ~$

Interactive Cuisenaire rods: https://nrich.maths.org/4348
Interactive bar modelling:
http://www.mathplayground.com/ThinkingBlocks/thinking_blocks_modeling\ _tool.html

Problem solving activities/Maths games: $\underline{h t t p: / / w w w . t r a n s u m . o r g / S o f t w a r e / ~}$
Starters, Practice questions, Videos: https://corbettmaths.com/

www.mathsisfun.com

http://nrich.maths.org/frontpage
http://www.mathematicshed.com/
https://whiterosemaths.com/
https://www.mymaths.co.uk/

