Ratio and Proportion

Guidance for Teachers

Highfield Schools

The following guidance aims to provide a consistent approach to the Ratio and Proportion, and includes guidance on fractions, decimals and percentages

The main aims of this guidance is to:

- Create love and enthusiasm for Maths
- Develop a deeper understanding of ratio and proportion
- Improve pupils' ability to work with fractions, decimals and percentages
- Ensure a consistent approach within schools
- Support Medium Term planning at Highfield Schools

Fractions

Definition: a fraction is a numerical quantity that is not a whole number, consists of numerator (top) and denominator (bottom)

Core skills

To progress and use fractions effectively, pupils will need:

- Basic numeracy skills
- Understanding of equal portions/sizes
- Understanding of symmetry
- Knowledge of multiples and factors

Progression

Half as 1 of 2 equal parts of shapes

Half of quantities

Pictorial

Concrete

Quarter as 1 of 4 equal parts of shapes

Quarter of quantities

Pictorial

Concrete

Find one quarter of 12
$1 / 3, \frac{1}{4}, 2 / 4$ and $\frac{3}{4}$ of length, shape, quantities

(2)		110 \%
	(2)	这
(avatier	0	$\begin{array}{ll} 80 \\ \theta \theta \text { \% } \\ 0 \end{array}$

Write simple fractions $\frac{1}{2}$ of $6=3$

Recognise equivalence of $2 / 4$ and $\frac{1}{2}$

Find unit fractions of numbers e.g. what is $\frac{1}{4}$ of 8 and show pictorially

Add fractions with same denominator

Example $\quad 5 / 7+1 / 7=6 / 7$
Ask 'how many sevenths altogether?' Add the numerators

Compare and order fractions with the same denominators

Example Put these fractions in size order $\quad 5 / 7,1 / 7,3 / 7$
Order the numerators

$$
1 / 7,3 / 7,5 / 7
$$

Subtract fractions with the same denominator

```
Example }\quad5/7-1/7=4/
```

Ask 'how many sevenths left?' Subtract the numerators

Find equivalent fractions using common multiples

Compare and order fractions where denominators are factors of the same number

Example Put these fractions in size order $5 / 6,{ }^{2} / 3,3 / 4$
Use knowledge of equivalent fractions to give common denominators
$5 / 6=10 / 12$
$2 / 3=8 / 12$
$3 / 4=9 / 12$
Order the equivalent fractions

$$
8 / 12,9 / 12,10 / 12
$$

Use common factors to simplify fractions

Add and subtract fractions with different denominators
Example
$\frac{1}{4}+\frac{2}{5}$

use equivalent fractions
So that resections have a
common denominator

$\frac{1}{4}=\frac{5}{20}$
$\frac{2}{5}=\frac{8}{20}$
$\frac{5}{20}+\frac{8}{20}=\frac{13}{20}$

Multiplications with fractions

Dividing fractions

$$
\begin{aligned}
& \text { Example - fraction - fraction } \\
& \frac{5}{12} \div \frac{1}{2} \\
& \text { 'Flip' second fraction, swap } \div \text { for } x \\
& \frac{5}{12} \times \frac{2}{1} \text {. multiply numerators } \\
& \text { multiply denominators } \\
& \left.\frac{5}{12} \times \frac{2}{1}=\frac{10}{12}=\frac{5}{6} \quad \begin{array}{c}
\text { (simplify } \\
\text { answer } \\
\text { possible) }
\end{array}\right) \\
& \text { Example - fraction } \div \text { integer } \\
& \frac{1}{6} \div 2 \\
& \text { 'Flip' integer (all integers have } \\
& \text { 'invisible' denominator of 1). Swap } \\
& \div \text { for } x \\
& \frac{1}{6} \times \frac{2}{1} \quad \text { multiply numerators } \\
& \frac{1}{6} \times \frac{2}{1}=\frac{2}{6}=\frac{1}{3} \quad \begin{array}{c}
\text { (simplify answer } \\
\text { if possible) }
\end{array}
\end{aligned}
$$

Decimals

Definition: a number that uses a decimal point followed by digits that show a value smaller than one

Core skills

To progress and use decimals effectively, pupils will need:

- Basic numeracy skills
- Understanding of decimal number system
- Understanding of place value
- Understanding of fractions

Progression

Count up and down in 10ths, 100ths

Recognise and write decimal equivalents to $\frac{1}{4} \frac{1}{2} \frac{3}{4}$

Demonstrate the effect of dividing a one or 2 digit number by 10 or 100 , recognising the value of the digits

Round decimals to 1 or 2 decimal places

Solve simple measure and money problems involving fractions and decimals to 2 decimal places

Example

Suni buys a reading book that costs £5 and two notebooks costing $£ 1.50$ each.
She pays with a $£ 10$ note. How much change does she get?

Read and write decimal numbers as fractions
Decimals to fractions
Examples

1) 0.71 has two decimal places
$\frac{71}{100} \leftarrow$ digits from decimal
$100 \leftarrow$ two decimal places $=2$ zeros
2) 0.397 has 3 decimal places
$397 \leftarrow$ digits from decimal
$\overline{1000} \leftarrow 3$ decimal places $=3$ zeros
simplify if possible

Read, write, order and compare numbers with up to 3 decimal places

Multiply one digit numbers with 2 decimal places by whole numbers
$2.76 \times 3 \quad$ method 1
Ignore decimals and calculate 276×3
$\begin{array}{r}276 \times \\ \begin{array}{r}3\end{array} \\ \hline 828 \\ \hline 21\end{array}$
2) give your answer the same number of
decimal places a in the question

$$
2 . \underbrace{76}_{2} \times 3=8 . \underbrace{28}_{2}
$$

$2.76 \times 3 \quad$ method 2
Vise lattice method of multiplication

Percentages

Definition: parts per one hundred, denoted by the symbol \%

Core skills

To progress and use percentages effectively, pupils will need:

- Basic numeracy skills, including multiplying and dividing by 10, 100
- Understanding of simple fractions
- Knowledge of fraction and decimal equivalents

Progression

Recognise the \% symbol and recognise this is the number of parts per 100
Example
2% means 2 out of every one hundred
35% is 35 in every one hundred

Write percentages as a fraction with the denominator 100

Example

$2 \%=2 / 100$
$35 \%=35 / 100$

Write percentages as simplified fractions
Example
$2 \%=2 / 100=1 / 50$
$35 \%=35 / 100=7 / 20$

Write percentages as a decimal

Example

$2 \%=2 \div 100=0.02$
$35 \%=35 \div 100=0.35$

Find simple percentages of amounts

Example - find 20\% of 120
Method 1 - unitary method
Find 1% by dividing 120 by 100
$120 \div 100=1.2$

Multiply by percentage required1.2 $\times 20=24$
Method 2 - fraction equivalents
$20 \%=1 / 5 \quad 1 / 5$ of $120=24$

Method 3 -calculator method

Enter $120 \times 20 \%$
Solve problems involving percentage increase or decrease
Example - a pair of jeans, costing $£ 30$, are reduced by 20% in a sale. How much do they cost now?

Method 1

Find 20% of $£ 30$ using one of the methods above
Deduct the answer from the original $£ 30 \quad 30-6=£ 24$
Method 2 -calculator
Use a decimal multiplier to find the answer
Enter 30×0.8

Ratio and Proportion

Definition:

Ratio - the relationship between two groups or amounts that expresses how much bigger one is than the other
Proportion - a part, share, or number considered in comparative relation to a whole

Ratio compares part-to-part, proportion compares part-to-whole

Core skills

To progress and use ratio and proportion effectively, pupils will need:

- Basic numeracy skills
- An understanding of simple fractions
- An understanding of factors and multiples

Progression

Recognise a ratio says how much of one thing there is to another
Example - 3 blue squares for every 1 yellow square is written as $3: 1$
Keep the ratio parts in the same order as the words

Write a ratio as a fraction

Example - The ratio of blue squares to yellow squares is $3: 1$. What fraction of the squares are blue?
\square

There are 4 squares altogether, 3 of which are blue.
The fraction of blue squares is $\frac{3}{4}$

Recognise ratios can be scaled up by doubling and scaled down by halving

Example-a ratio of $3: 1$ is equivalent to 6:2, 12:4 etc.
3:1
6:2
12:4

Find equivalent ratios by multiplying or dividing

Multiply or divide both parts of the ratio to find equivalents Example - a ratio of $3: 1$ is equivalent to $9: 3,24: 8,30: 10$ etc $36: 12$ is equivalent to $3: 1,12: 4,6: 2$ etc.

Divide amounts by a given ratio

Example - 27 sweets are shared between Anne and Bill in the ratio 4:5. How many sweets does each child get?

Method 1 - numerical

Add the parts of the ratio

$$
4+5=9
$$

Divide the amount to be shared by this total

$$
\begin{aligned}
& 27 \div 9=3 \\
& 4 \times 3=12 \\
& 5 \times 3=15
\end{aligned}
$$

Multiply both parts of the ratio by this answer

Answer
Anne gets 12 sweets, Bill gets 15 sweets
Method 2 - pictorial

Method 3 -concrete

Useful Websites

Activities for all year groups: www.ixl.com

Go Gordons Interactive Maths: http://www.wldps.com/gordons/

Top Marks Games: http://www.topmarks.co.uk/maths-games/5-7-years/counting Algebra tiles: $h t+p: / / t e c h n o l o g y . c p m . o r g / g e n e r a l / t i l e s / ~$

Interactive Cuisenaire rods: https://nrich.maths.org/4348
Interactive bar modelling:
http://www.mathplayground.com/ThinkingBlocks/thinking_blocks_modeling\ _tool.html

Problem solving activities/Maths games: $\underline{h t t p: / / w w w . t r a n s u m . o r g / S o f t w a r e / ~}$
Starters, Practice questions, Videos: https://corbettmaths.com/ www.mathsisfun.com
http://nrich.maths.org/frontpage
http://www.mathematicshed.com/
https://whiterosemaths.com/

